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Abstract. Within the differential geometry regime, we have introduced an ansatz and have 
reduced the classical O(4) non-Abelian Yang-Mills gauge field equations into one differen- 
tial equation which essentially describes the variation of the field components in generalised 
time and space. This ansatz amounts to requiring that the metric tensor be diagonal and 
the two parameter functions be functions of radial distance only. We have carried out a 
series of numerical simulations of the field equation and found that the field strength 
components display the confinement property. 

1. Introduction 

Much effort has been expended in the past few decades towards trying to obtain 
solutions [l,  21 to the classical non-Abelian Yang-Mills gauge field. An early solution, 
namely a monopole with singular string, was found in 1968 [3]. Monopoles with 
different magnetic charges were deduced later [4-61. Within the Euclidean SU(2) 
gauge regime, the instanton solution was found [7,8]. Such a solution is non-singular, 
localised, self-dual, and has a topological charge of one unit. Later, multi-instantons 
[ 9 ,  101 were derived which have square integrable gauge potential. Another type of 
solution, the meron [ l l ] ,  was then found to represent a point-like concentration o f f  
unit of topological charge, with a non-zero rest mass. Then multi-merons [12] were 
found to be derivable from the YM gauge field. Some other solutions are also known 
to exist. 

When we attempt to solve the gauge field equation, we often look for solutions 
which might represent particles participating in physical interactions. For that reason, 
soliton-type solutions are much more desirable. Though monopoles and instantons 
are viewed as solitons, they d o  not show propagating characteristics. A method 
commonly used in obtaining solutions to the complex nonlinear field equation is the 
introduction of an ansatz. 

In this paper, we study the classical solutions of the Y M  gauge field equation in 
Euclidean spacetime within the differential geometry regime. These solutions are useful 
as they correspond to an approximate description of quantum tunnelling effect [ 1,2]. 
Notice, though, that the spacetime manifold is flat when the special solutions are 
obtained. In looking for a special solution, we shall assign a set of ansatze to the line 
element under the spherically symmetric condition. Eventually we arrive at only one 
gauge field equation describing the variation of an O(4) non-Abelian gauge field. 
Though we have not been able to obtain analytical solutions to this field equation, we 
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have carried out a series of numerical simulations. We would like to report some very 
interesting features of these solutions to the field strength components. In particular, 
the ‘confinement property’ appears to persist in the solutions. 

A similar method is applied to obtain soliton solutions using a different set of 
ansatze and the result is published in another paper [13]. 

2. One type of spherically symmetrical gauge field 

The method we use in our derivation is to start with a line element or metrix tensor 
in four-dimensional space. Employing a set of orthogonal unit basis frame transforma- 
tions, we obtain a vierbein field [14] leading to a spin connection [15,16]. We state 
that such a spin connection is simply our gauge potential. Our ansatz is to take that 
metrix tensor g,, be diagonal. A similar method has recently been applied to find 
new soliton solutions to the non-Abelian YM gauge field [13]. 

Consider a system with spherical symmetry, so that the line element ds in four- 
dimensional space can be expressed as 

d s 2 =  -gPu dx” d x ”  

=-e2Qd~2-e2Adr2-r2(d82+sin2  8 d 4 2 )  

where T = it, c = 1, and 

with p, v = 1,2,3,4;  x” = (r, 8, 4, T ) ,  A and @ being functions of r only, and other 
symbols have their usual meanings. In order to study the gauge field properties, we 
introduce an orthonormal frame with unit basis dy“ which is related to the spacetime 
variable by the following transformation: 

where Lz is the vierbein field and 6 = 1, 2, 3, 4 is a group index. As pointed out by 
Wilczek [ 171, the gauge field properties can be analysed more clearly by introducing 
the vierbein field. Based on (2.2), the metric tensor becomes 

dy& = Lz dx* (2.2) 

- -  
g,, = L ; L C ~ & ~  (2.3) 

pLi, = pi 
and we have the orthogonal condition 

(2.4) 
In view of the diagonal form of g,, in (2.1) under the spherical symmetry condition, 
the vierbein field is simply 

(2.5) 
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We assert that the spin connection Cgb is simply our O ( 4 )  gauge potential, i.e. the 
potential is AEp = Cfb.  In polar coordinates, it is then elementary to show that the 
non-zero components of the potential appear as 

A y = - e  - \  s i n 6  A?g = -e- \ 

^ ^  ^ ^  (2 .7)  

where the prime indicates differentiation with respect to r. It is well known that the 
O ( 4 )  gauge field strength Fgf is expressible in terms of A:b and its derivative: 

( 2 . 8 )  

A:* = -COS 6 AY = -e@-\@' 

~ f b  = apA:P^ -a,A;b + A","AQP̂  - A % & A ; ~ .  

From ( 2 . 7 )  and ( 2 . 8 ) ,  we obtain the non-zero components of the field strength: 
- -  F?e  ̂= e - A ~ !  F:$ = e- \AI  sin 6 F" rT = -('@-'@I)' r8 

* *  (2.9) FG6 - \ @ I  i+ - @-' W sin 6 F,, - -e F:$ = sin 6( 1 - e-2.') 87 - 

(2.10) 

Note that the last two terms are zero in a Cartesian coordinate system; here they are 
non-zero in the polar coordinate system. It is easy to write down the explicit expressions 
for the Christoffel symbol rEu in flat spacetime and we shall omit the procedure here. 
Using such expressions, putting ( 2 . 7 )  and (2.10) into ( 2 . 1 1 ) ,  we arrive at a system of 
gauge field equations in the spherically symmetric case 

3. Solutions with confined properties 

A simple ansatz for the system (2.12a) and (2.12b) is given by 0 = 0. We can simplify 
this system to one equation 

1 
r 

(e-\A')'-? e-'( 1 -e-*') = 0. ( 3 . 1 )  

Defining f ( r )  = e-\ ' r) ,  ( 3 . 1 )  can be simplified further to 

1 
r f " + i f (  1 -f?) = 0. ( 3 . 2 )  
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Note that under the condition @ = 0, the non-zero components of the gauge potential 
and field strength become simply 

^ ^  

A:’ = -COS 0 (3.3) ;ê  - A% - - -f sin e A0 --f 

4. Analysis 

In the last section, we have arrived at a field equation of the form specified in (3.2). 
In order to study the special features o f f  and hence the potential A:6 in a con- 
venient way, we carry out another transformation 

(4.1) 

(4.2) 

_. r = r , e  A 

and write the normalised field equation as 

p+j-+ f(1- f’) = 0 
with f= df/dz. Writing (4.2) as f= -f-aV/af; we retrieve the Newtonian equation 
of motion for a particle experiencing a damping force -fj. and a conservative force 
derivable from a potential V; here 

v=+f’-if4 (4.3) 
In figure 1, we show the variation of this potential V with respect tof,  which is treated 
as a generalised coordinate. Let us first neglect the influence of the damping force on 
the motion of the particle. As the ‘hypothetical particle’ travels from f= -CO, it passes 
through the peak specified by f = -1. Then the particle goes down the slope, passing 
through the origin f = 0 to the other side. In case (i), if the velocity of the particle at 
P, is zero, and it is allowed go to the right then it will be momentarily at rest at P z .  
In practice, it will oscillate between P,  and Pz.  If, however, in case (ii), the velocity 
is greater than 0 at P , ,  the particle will pass through P2 and go down the slope to the 
right side. As f + 00, V +  --CO. Thus the initial condition determines the type of motion 
of the particle. If we include the damping force in case (i), the particle will oscillate 

f 

Figure 1. The conservative potential V(f) as a function of the generalised coordinate f: 
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about 0 with decreasing amplitude. In case (ii), if the velocity at P, is large enough, 
the particle could still go beyond Pz and down the slope on the positive side off :  If 
the velocity is not large enough to overcome the influence of damping, the particle 
could not go beyond Pz, but would again oscillate about 0, but for a longer ‘time’ 
interval. 

We cannot obtain an analytical solution to equation (4.2). Using numerical simula- 
tion, we show in figure 2, the evolution of f  and f in the course of ‘generalised time’ 
z, under the boundary condition that the generalised velocity is f = 0, f = 0.4 at z = 0. 
Referring back to figure 1, the particle passes through point P,, 0, to reach the point 
f = 0.4 where the particle is momentarily at rest, and it comes back and oscillates. We 
see in figure 2 that f + 0 as z increases. The velocity f is also plotted for convenience 
of analysis. Both f and f pass through the horizontal axis an infinite number of times. 
In fact, the periodicity of oscillation off  can be obtained in the ‘small-f domain’, so 
that 

If I >> If 31 

f + j + f = O  (4.4) 

f = A cos(48z  + 40) (4.5) 

and the field equation is approximately given by 

giving a solution 

where A and do are integration constants. The period of the oscillation is 4 ~ / 8  in 
this case. 

--. f ’  

-0  4 
0 4 8 12 16 20 24  28 

Z r/ro 

Figure 2. ( a )  Variation of the functions f and f= df/dz with generalised time z, under 
the boundary conditions f= 0.4, df/dz = 0 at z = 0. ( b )  Dependence o f f ;  f ’=  df/dr  and 
F on normalised distance r / r o  with the same boundary conditions. 

In order to visualise how the relevant functions vary with changing radial distance 
r, we plot in figure 2 ( b )  the graphs for f ( r ) ,  f ’ ( r )  and F ( r )  which represents the 
component F “ r e :  

(4.6) 

where f ’ s d f l d r .  
Note that in figure 2(b), the independent variable has been transformed back to r 

according to (4.1). We have found that the ‘depth of the small well’ pertaining to the 
F ( r )  curve access at rd 5 1.47. It is worth remarking that F + -cc at rM < 28. Since 
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F(  r )  is one field strength component, it is connected with the interaction force causing 
the field. If we put a test particle in the field, its motion is confined within a range 
r c c  r < r,; the particle can never go beyond r, .  Another interesting feature is that 
F ( r )  + -a at some finite space point in each case, representing the fact that the field 
is enormous, but attractive in nature. So far, F ( r )  is not yet a direct physically 
measurable quantity, yet the ‘confined feature’ remains after F (  r )  is transformed. The 
detail of the connection between F (  r )  and an experimentally measurable quantity is 
rather complex, and awaits further research. 

As another example, we take the boundary conditions to be: at z =0,  f =0,  
f= df/dz = 1.0. In figure 3 ( a ) ,  we plot f and f against z, similar to figure 2 ( a ) .  In 
figure 3(b), we plot f ;f’  (=df /d r )  and F ( r )  against r. We note that the ‘well’ in the 
F ( r )  curve is much more pronounced, due to different scaling in r (see (4.1)). 

In figure 4, we start with a different type of boundary conditions: at z=O, f = O ,  
df/dz = 1.5, such a condition correspond to a different type of motion all together. 
Refer back to figure 1, the hypothetical particle at point 0 has a rather large velocity, 
so that it can pass through point P2 and go down the slope as V(f) + -CO. In the f 
scale, the particle starts from f+ -00, and propagates in the direction shown by the 
arrow in figure 4. When f = 0, r/ ro = 1 and as r /  ro + 0, f+ CO. We also show the f’ 
curve in figure 4. The behaviour of F ( r )  is rather special in this case; it remains 
negative for all spatial points. The particle is being attracted at all points; in particular, 
it experiences an infinite field strength as r / r O  falls below a critical value -4.3. 

- 2 0 2 4 6 8 1 0  
Z 

Figure 3. ( a )  Variation of the functions 1; f =df /dz  with generalised time z, under the 
boundary conditions f =O, df/dz = 1 at z = 0. (6)  Dependence of f ,  f’= df /dr  and F on 
normalised distance r /  ro with the same boundary conditions. 

U-- 

U-. 2 

Figure 4. 1; f ’ =  df/dr  and F plotted against r / ro  
under the boundary conditions f = 0, df/dz = 1.5 at 
z = 0. 

Figure 5. 1;f‘= dfidz and as functions of r / ro  under 
the boundary conditions f = 1.2, df/dr = 0 at z = 0. 
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The third class of solution is displayed in figure 5 with the following boundary 
conditions: at z = 0,  f = 1.2, df/dz = 0. Refer back to figure 1: the particle is travelling 
towards the left and is at rest at P3 (f= 1.2). It then moves ‘backwards’ in the sense 
that it is being repelled by the field and goes to f+ m. The particle can never reach 
the domain bounded by PI and Pz.  

Following the same type of argument, if the particle starts at P4 (f = -1.2, df/dz = 0), 
it will ‘go back’ and can never again reach the domain bounded by PI and P 2 .  If we 
carry out the transform f + -f, f‘+ -f’, F = -F in figure 5 ,  we will obtain another 
corresponding figure; we wou!d omit such an extension. 

5. Conclusions 

(i)  Using a method recently developed [14] within the differential geometry regime, 
we arrive at a single differential equation describing an O(4) non-Abelian YM gauge 
field using a certain spherically symmetric ansatz. 

(ii) We have carried out a series of numerical simulations of the spatial field 
equation f”+ (1/ r2)f( 1 -f2) = 0, where f’ = df/dr, and the corresponding generalised 
temporal field equation f+f+f( 1 - f 2 )  = 0, where f= df/dz, r / r o =  e-’. Though the 
field quantities have yet to be transformed to physically observed quantities, we know 
that the motion of a particle in a field is related to the field strength tensor as well as 
the general charge. Drawing an analogue with Newtonian motion, we can imagine 
that an hypotheical particle in the gauge field is experiencing a conservative potential. 
V(f) as depicted in figure 1 plus a damping force. Based on such an analysis, we 
have analysed numerically the generalised temporal evolution of f ,  f‘, f given certain 
sets of boundary conditions. The distributions of these three functions, together with 
the field strength FPtrs in space r are also analysed numerically. 

(iii) Figures 2-5 describe three types of motion of the hypothetical particle: (a) 
the particle is oscillating between PIP2 in figure 1, (b) the particle goes through 
PI, P2,  P 3 , .  . . , (c) the particle proceeds from right to left towards P3 and then retreats 
back. 

(iv) We observe that under certain boundary conditions the particle experiences 
a negative infinite field strength at a certain space point. On the other hand, the same 
field strength is enormously large but positive at a certain smaller value of the space 
point. Such a feature implies spatial confinement. 

(v)  If the generalised velocity is large enough (figure 41, F (  r )  + --a? at two space 
points. Such a result indicates another type of confinement. 

(vi) We have numerically analysed the other field strength components and have 
obtained similar confinement properties. We shall not present similar graphs in in 
order to save space. 

(vii) Our result appears to indicate that further analysis of the field strength and 
gauge potential components is desirable, in order to apply the theory to specific 
problems. 
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